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A note on the optimum profile of
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The paper presents an exact analytical solution to the problem of finding the optimum
profile of a two-dimensional plate which planes on a water surface without spray
formation and maximizes the lift force. The lift is maximized under the only isoperi-
metric constraint of fixed total arclength of the plate. The exact solution is compared
with approximate analytical and numerical results by Wu & Whitney (1972). The
shape of the optimum plate turns out to be technically unrealizable because of small,
tightly wound spirals near the end points. It was shown numerically that cutting off
small segments near the end points leads on the one hand to insignificant change in
the lift force and on the other hand to a non-separating boundary layer along the
remaining part of the optimum plate.

1. Introduction
Let us consider the problem formulated by Wu & Whitney (1972). A curved plate

AB of length 2L planes on the free surface of an ideal incompressible fluid. In the
body frame of reference the free-stream velocity is V0 in the positive x-direction. The
Froude number Fr = V0/(2gl)

1/2, based on the chord length 2l and the gravitational
constant g, is assumed to be so large that the effect of gravity may be neglected.
The flow in the physical z-plane is shown in figure 1. The origin of the coordinate
system is located at the point O which divides the plate into two parts with equal
lengths L. On the free streamlines CA and BC the velocity is constant and equal to
V0. The problem is to find the shape of the plate which maximizes the lift Fy under
the isoperimetric constraints of fixed chord 2l and total arclength 2L.

An important feature of the above formulation is that the planing surface satisfies
the so-called ‘smooth entry’ condition, when the width of the spray sheet near the
leading edge equals zero. Cumberbatch (1958) was the first to explore this flow regime
that for a prescribed plate shape is possible for only one angle of attack of the plate.
An advantage of this regime is that the drag force due to spray formation is equal to
zero.

Wu & Whitney succeeded in obtaining an approximate analytical solution to the
above problem for small values of the parameter k = (L − l)/l. We slightly modify
their formulation, namely we assume that only the total arclength 2L is fixed and try
to construct an exact analytical solution to this new problem. As we shall see later
our solution to the modified problem turns out to be an exact solution to the initial
one for a particular value of k = sinh (1)− 1 ≈ 0.1752011.
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Figure 2. Parametric t-plane.

2. Mathematical formulations
As in Wu & Whitney (1972) we choose the lower half-plane Gt as a parametric

t-plane (see figure 2). The conformal mapping of the domain Gt onto the region of
the complex potential W is as follows:

W = aV0t, (2.1)

where a is a positive constant, which has dimension of length.
We introduce the logarithmic hodograph variable

ω(t) = log
V0 dz

dW
= log

V0

V
+ i θ, (2.2)

where V is the flow velocity, θ is the inclination of the velocity vector. Let us assume
that the function

ν(ξ) = Re (ω(t)) for t = ξ, |ξ| 6 1, (2.3)

is known. On the free streamlines CA and BC we have

Re (ω(t)) = 0, for t = ξ, |ξ| > 1. (2.4)

With the Schwarz–Poisson formula we obtain from (2.3) and (2.4) that

ω(t) = − 1

π i

∫ 1

−1

ν(ξ) dξ

ξ − t . (2.5)

By means of formulae (2.1)–(2.5) all features of the flow can be completely deter-
mined in terms of ν(ξ) and a. In particular, for the total arclength 2L we have the
representation

2L = a

∫ 1

−1

eν(ξ) dξ. (2.6)
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For the total force F = Fx + iFy , consisting of the drag Fx and lift Fy , the following
formulae hold (Wu & Whitney 1972):

Fy = ρV 2
0 a

∫ 1

−1

ν(ξ) dξ, Fx = 0, (2.7)

where ρ is the density of the fluid.
Up to this point we have reproduced the reasoning by Wu & Whitney (1972) to

formulate the problem in terms of the function ν(ξ). Now we eliminate the parameter
a from (2.6) and (2.7) to obtain

Fy = ρV 2
0LJ[ν] (2.8)

with

J[ν] =

2

∫ 1

−1

ν(ξ) dξ∫ 1

−1

eν(ξ) dξ

. (2.9)

Thus the hydrodynamic problem of maximizing the lift of the planing plate under
the constraint of fixed arclength 2L is equivalent to finding the function ν(ξ) which
maximizes the functional (2.9).

3. Finding the maximum lift force
Since for any ν(ξ) > 0 the values of the functional J[ν] are positive we shall seek

its maximum under the assumption that the integral

T =

∫ 1

−1

ν(ξ) dξ

takes a positive value. We can estimate the positive denominator in (2.9) by a special
case of Jensen’s inequality (see e.g. Hardy, Littlewood & Polya 1934, p. 138):∫ b

a

f(ξ) eν(ξ) dξ > exp

[∫ b

a

f(ξ) ν(ξ) dξ

]
, (3.1)

where ∫ b

a

f(ξ) dξ = 1, f(ξ) > 0,

and the equal sign in (3.1) holds if and only if ν(ξ) ≡ const. As T > 0 we apply (3.1)
to the denominator in (2.9) to obtain

J[ν] 6 T e−T/2. (3.2)

The right-hand side of the inequality (3.2) is a function of the T -argument. This
function achieves its strongly positive maximum at T = 2. Therefore

J[ν] 6 2e−1, (3.3)

where the equal sign holds if and only if

ν(ξ) ≡ 1. (3.4)

Thus the function (3.4) is the solution to the problem posed. The values of the global
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Figure 3. Shape of the maximum-lift plate.

maximum Fymax and the function ω(t) can be written as

Fy 6 Fymax = 2ρV 2
0L e−1, (3.5)

ω(t) =
i

π
log

t− 1

t+ 1
. (3.6)

The technique of applying Jensen’s inequality to determining optimum profiles,
which maximize hydrodynamic forces in free-surface flows, has been used earlier by
Maklakov (1988), Maklakov & Uglov (1995). The technique allows one not only to
find an exact analytical solution but also to prove that the solution gives the global
extremum. By the simplicity of the problem considered in this work the technique
takes here the simplest and clearest form.

From (3.4) and (3.6) we find that the inclination θ of the tangent to the optimum
plate and the arclength s are connected by the formula

θ =
1

π
log

1− s/L
1 + s/L

. (3.7)

From (3.4) we deduce that the velocity along the optimum plate is constant: V (s) =
V0 e−1. The domain corresponding to the flow region in the ω-plane is the vertical
strip 0 6 Re (ω) 6 1.

From (3.7) it follows that the optimum plate is symmetric with respect to the y-axes
and in the vicinities of the end points A and B takes the form of spirals. By using
(3.7), after a little algebra it is possible to show that the spirals are asymptotically
logarithmic, and are described by the equation (for the right half of the optimum
plate)

r/L = 2 exp (M + πφ), (3.8)

where M = −π2/2−π arctan π+log [π/(π2 +1)1/2], φ is a polar angle, r is the distance
between a point on the optimum plate and the pole B of the spiral.

The shape of the optimum plate can be found from (3.7) and the formulae

x(s) =

∫ s

0

cos θ(s) ds, y(s) =

∫ s

0

sin θ(s) ds. (3.9)

This shape is shown in figure 3. Note that the spirals near the end points of the
optimum plate are so tightly wound that they cannot be seen at any scales. Indeed, it
follows from (3.8) that with every one-half revolution of the radius vector r its length
decreases by the factor e−π2 ≈ 0.5 × 10−4. Therefore, if we plot a part of the spiral
corresponding to one-half revolution of the radius vector r, the remaining part will
look like a point at any scales.



The optimum profile of a sprayless planing surface 285

4. Comparisons
Now we calculate the chord length 2l and the parameter k = (L − l)/l for the

optimum plate. From (3.7) and (3.9) we have

l

L
=

1

2

∫ 1

−1

cos

(
1

π
log

1− ξ
1 + ξ

)
dξ. (4.1)

Making use of the transformation

u =
1

π
log

1− ξ
1 + ξ

we obtain
l

L
= π

∫ ∞
−∞

eπu

(1 + eπu)2
cos u du = πRe (I),

where

I =

∫ ∞
−∞

eπu+iu

(1 + eπu)2
du.

The last integral can be calculated with the theory of residues by integrating the
function F(t) = eπt+it/(1 + eπt)2 along the boundaries of the strip 0 < Im (t) < 2 in
the t-plane. The calculation gives

l

L
=

2e

e2 − 1
, k = sinh (1)− 1 ≈ 0.1752011.

Dividing both sides of the inequality (3.5) by ρV 2
0L, we can see that the lift coefficient,

based on the chord length, has the following estimate:

Cy =
Fy

ρV 2
0 l
6 2e−1(1 + k), (4.2)

where the equal sign holds if and only if k = sinh (1)−1 and only for the plate whose
shape is described by (3.7) and (3.9). So we have just obtained not only the exact
analytical solution to the modified problem, but a full solution to the initial problem
by Wu & Whitney (1972) for a particular value of the parameter k = sinh (1)− 1.

For small values of k the work by Wu & Whitney (1972) presents the approximate
analytical solution to the full problem given by the formulae

Cymax = 4[2µπ cot (µπ)]1/2/l(µ), k = cot2 (µπ)

(
1− sin 2µπ

2µπ

)
/l(µ) (4.3)

with

l(µ) = 4− 1

sin2 µπ

(
1− sin 2µπ

2µπ

)
+ [8µπ cot (µπ)]1/2. (4.4)

Line 1 in figure 4 demonstrates the function Cymax(k) given by (4.3) and (4.4). The
straight line 2 in figure 4 is the estimating function (4.2). As one can see by comparing
lines 1 and 2, the approximate analytical solution may be correct only for very small
values of k and gives excessive values of the maximum lift for k > 0.0200223, the last
value being the abscissa of the point where line 2 intersects line 1.

Besides the approximate analytical solution Wu & Whitney (1972) proposed a
technique based on the Fourier-series expansion of the function to be found. In
carrying out the calculation they kept only two terms in the series. Line 3 in figure
4 shows the function Cymax(k) obtained in Wu & Whitney (1972) by the two-term
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Figure 4. Cymax versus k: curve 1, analytical method by Wu & Whitney (1972) for small values of
k; 2, estimate (4.2); 3, approximate method by Wu & Whitney (1972) based on a two-term Fourier
expansion.

expansion. By comparing lines 2 and 3 it is possible to deduce that the numerical
result by Wu & Whitney is in excellent agreement with our exact result in the vicinity
of point k = 0.1752011. The straight line 2 practically touches line 3. It is worth
noting that the two-term expansion does not give any singularities for the end points
A and B and as a consequence does not give any spirals. Therefore, based upon the
agreement of the two results, the contribution of the spirals to the lift force seems to
be small.

5. Realizable profile shapes
A disturbing feature of the solution (3.4), obtained in § 3, is the discontinuity of the

velocity field at the end points of the optimum plate. Indeed, on the free streamlines
CA and BC we have V = V0, whereas at the end points A and B on the optimum plate
V = e−1V0. On the one hand the discontinuity leads to the technically unrealizable
profile shape with spirals, on the other hand the discontinuity gives rise to an infinite
pressure gradient at the leading edge and, as a consequence, to inevitable separation.
But as follows from § 4 the contribution of the spirals to the lift force seems to be
small, and the most natural way to remove the discontinuity seems to be to cut
off small segments of the optimum plate near its ends. The lengths of the removed
segments must be small enough not to lead to a considerable change in the lift force,
and at the same time must be large enough not to lead to a very unfavourable
pressure gradient near the leading edge or to a technically unrealizable shape near
the trailing edge. To answer the question of whether such a compromise is possible
the technique of solving the problem on planing plates with prescribed shapes needs
to be developed.

Let the shape of a convex plate AB be given by the equation

M dθ/ds = K(θ), Tmin 6 θ 6 Tmax, (5.1)

where K(θ) is a given non-vanishing function, Tmin and Tmax define the location of
the ends of the plate. The stretch factor M defines the total arclength of the plate. In
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our case the total arclength equals 2L and

M = 2L

(∫ Tmin

Tmax

dθ

K(θ)

)−1

. (5.2)

Let us introduce the function

λ(ξ) = dθ/dξ, |ξ| 6 1,

and assume that λ(ξ) is known. Then we can find

Im (ω(t)) = θ(ξ) = Tmax +U[λ] for t = ξ, |ξ| 6 1, (5.3)

where

U[λ] =

∫ ξ

−1

λ(σ) dσ. (5.4)

The conditions (2.4) and (5.3) constitute a mixed boundary value problem for the
analytic function ω(t), and ω(t) can be restored by the formula

ω(t) =
(t2 − 1)1/2

π i

∫ 1

−1

θ(σ) dσ

(1− σ2)1/2(σ − t) . (5.5)

It follows from (5.5) that

ν(ξ) = − (1− ξ2)1/2

π

∫ 1

−1

θ(σ) dσ

(1− σ2)1/2(σ − ξ)
= C[θ], |ξ| 6 1, (5.6)

where C[θ] is a singular linear operator.
Now by making use of (5.1), (5.3), (5.6) and standard approaches (see Birkhoff &

Zarantonello 1957) we can deduce a nonlinear equation to find the function λ(ξ):

λ(ξ) = αK(Tmax +U[λ]) exp (CU[λ]) (5.7)

with α = a/M. To find the parameter α we should add to (5.7) the relationship∫ 1

−1

λ(σ) dσ = Tmin − Tmax. (5.8)

Equations (5.7) and (5.8) represent the system of coupled equations to determine
λ(ξ) and α. We solve the system (5.7) and (5.8) numerically by means of discretization
and Newton’s iterative procedure. The details of the numerical technique can be found
in the Appendix.

In the case of the plate given by (3.7) and (3.9) the function K(θ) takes the form

K(θ) = −2

π
cosh

πθ

2
.

If Tmin = −∞, Tmax = +∞, then according to (5.2) the factor M = L and we deal
with the plate shown in figure 3. If Tmin and Tmax take finite values, then we deal
only with a part of the plate shown. First we consider symmetric parts choosing
Tmax = −Tmin. The velocity distributions along these parts are shown in figure 5.
These velocity distributions demonstrate very explicit non-uniform convergence to
the function V/V0 = e−1 ≈ 0.3679.

In table 1 we show the lift coefficients CL, based on the total arclength 2L, for
the optimum plate with symmetrically removed segments. It follows from (3.5) that
CL = Fy/(ρV

2
0L) 6 CLmax = 2e−1. As one can see from column 3 of table 1 the lift
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Figure 5. Symmetric case. Velocity distributions along the parts of the optimum plate: curve 1,
Tmax = 10◦; 2, Tmax = 30◦; 3, Tmax = 50◦; 4, Tmax = 70◦; 5, Tmax = 90◦; 6, Tmax = 120◦; 7,
Tmax = 180◦.

No. Tmax (deg.) CLe/2 CD Stran/L Ssep/L CL/CD

1 10 0.3260 0.0028 −0.8787 1.000 85.47
2 30 0.7277 0.0028 −0.9416 1.000 189.1
3 50 0.9020 0.0027 −0.9801 1.000 241.7
4 70 0.9670 0.0027 −0.9944 1.000 264.4
5 90 0.9892 0.0027 −0.9982 1.000 270.4
6 120 0.9980 0.0027 −0.9997 1.000 269.5
7 180 0.9999 — −1.000 −1.000 —

Table 1. Symmetric case. Integral characteristics of the parts of optimum plate.

coefficients converge to the limiting value 2e−1. For Tmax = 90◦ the lift coefficient is
only about 1% less than the maximum; for Tmax = 120◦ the difference between the
maximum value and the obtained one is only 0.2%. Columns 5 and 6 of table 1
demonstrate the behaviour of boundary layer for the velocity distributions shown in
figure 5. We calculate the boundary layer by means of Eppler’s integral method (see
Eppler 1990) assuming that it starts at the leading edge. The last assumption looks
natural because the skin friction between water and air is much less than between
water and a solid wall. The Reynolds number, defined by Re = V0L/ν (here ν is the
kinematic viscous coefficient), is taken to be equal to 107. In spite of the fact that
velocity distributions shown in figure 5 have very unfavourable pressure gradients
starting at the leading edge, the boundary layer does not separate even for curve 6
of figure 5, when Tmax = −Tmin = 120◦. This is because the boundary layer starts at
the leading edge without any history. But the unfavourable pressure gradient leads
to the boundary layer quickly becoming turbulent and very close positions of the
transition point stran to the leading edge. In column 4 of table 1 the drag coefficients
CD = Fx/(ρV

2
0L) due to the skin friction are shown.

Since the pressure gradients for the velocity distributions shown in figure 5 are
favourable near the trailing edge, there is no need to cut off small segments symmet-
rically. But for a non-symmetrical plate it needs to be taken into account that the
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Figure 6. Non-symmetrical case. Velocity distributions along the parts of the optimum plate
(Tmin = −180◦): curve 1, Tmax = 0◦; 2, Tmax = 30◦; 3, Tmax = 50◦; 4, Tmax = 70◦; 5, Tmax = 90◦; 6,
Tmax = 120◦; 7, Tmax = 180◦.

No. Tmax (deg.) CLe/2 CD Stran/L Ssep/L CL/CD αa (deg.)

1 0 0.8364 0.0021 −0.9322 1.000 299.0 −28.33
2 30 0.9243 0.0022 −0.9561 1.000 314.7 −11.71
3 50 0.9656 0.0023 −0.9843 1.000 309.5 −5.71
4 70 0.9865 0.0025 −0.9948 1.000 295.9 −2.57
5 90 0.9951 0.0026 −0.9983 1.000 283.6 −1.08
6 120 0.9990 0.0027 −0.9997 1.000 272.5 −0.27
7 180 0.9999 — −1.000 −1.000 — 0

Table 2. Non-symmetrical case. Integral characteristics of the parts of the optimum plate
(Tmin = −180◦).

function ω(t) is not necessary zero at infinity, namely

ω(∞) = i αa =
i

π

∫ 1

1

θ(σ) dσ

(1− σ2)1/2
,

where αa is the angle by which we need to rotate the plate, defined by (5.1), in the
clockwise direction to satisfy the smooth entry condition. Now we choose Tmin =
−180◦ = const, and change Tmax. The velocity distributions along the plates obtained
are shown in figure 6. In figure 6 one can also see non-uniform convergence of the
function V (s)/V0 to V (s)/V0 = e−1.

In table 2 integral characteristics of the calculated plates are demonstrated. The last
column shows the angles of rotation αa. As one can see from table 2 for Tmax = 90◦
we have a lift coefficient which is only 0.5% less than the maximum; for Tmax = 120◦
the difference is 0.1%. As in the previous symmetric case we have no separation of the
boundary layer for Re = 107 and Tmax 6 120◦. For Tmax = 120◦ the lift-to-drag ratio
in the non-symmetrical case is about 270 as in the symmetric one, but for Tmax = 30◦
the ratio is greater and achieves a value of 315. This means that a non-symmetrical
part of the optimum plate can give a greater lift-to-drag ratio than almost the entire
optimum plate with Tmax = 120◦. It seems to be possible to formulate and solve the
problem of finding the planing plate that maximizes the lift-to-drag ratio.
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6. Conclusions
The optimum shape of a planing surface found analytically in an ideal fluid and

defined by (3.7) and (3.9), turns out to be technically unrealizable because of small,
tightly wound spirals near the end points. Comparison with the numerical results
by Wu & Whitney (1972) suggests that there exist realizable shapes without spirals
which have the lift coefficients almost as high as the maximum. In § 5 it is shown
numerically that if small segments are cut off near the ends of the ‘ideal’ optimum
plate, the remaining part, which satisfies the condition of continuity of the velocity
field, can give a lift which is only 0.1% less than the maximum and at the same time
the boundary layer along the part does not separate. This means that the problem
solved can be reformulated as follows: find the planing plate of fixed arclength 2L
that maximizes the lift force under the restriction that for a fixed Reynolds number
Re = V0L/ν the boundary layer along the plate will be non-separating.

We would like to acknowledge the useful comments of referees that stimulated
writing § 5. This work was supported by the Russian Foundation of Basic Research
under Grants 96-01-00111, 96-01-00123.

Appendix. Numerical method
To obtain a nonlinear solution to (5.7) and (5.8) it is necessary to resort to a

numerical method. The mesh of discrete ξ-points on the segment [−1, 1] is defined by

ξi = −1 + 2P (ui), P (u) = u4(35− 84u+ 70u2 − 20u3),

ui =
(i− 1)

(N − 1)
, i = 1, N, (A 1)

where N is the number of collocation points, and the polynomial P (u) is chosen so
that

P (1) = 1, P (0) = P ′(0) = P ′′(0) = P ′′′(0) = P ′(1) = P ′′(1) = P ′′′(1) = 0.

The objective of the numerical method is to find the λ(ξi). The nodes ξi of the mesh
(A 1) are strongly concentrated near the end points of the segment [−1, 1], and this
concentration is necessary to catch large derivatives of the function λ(ξ) near these
points.

To discretize (5.7) and (5.8) we need to construct discrete analogues of the linear
operators U[λ] and CU[λ]. We will seek the values of these operators on the mesh ξi
in the form

U[λ](ξi) =

N∑
j=1

Uijλj , CU[λ](ξi) =

N∑
j=1

Dijλj , i = 1, N,

where the coefficients Uij, Dij depend only on the location of the nodes ξi and the
technique that we choose for approximate integration on a fixed mesh. In developing
this technique we always obey the following rule: if an integrand has no singularity,
approximate it by the natural cubic spline (the second derivative at the end points
equals zero) and after that integrate the cubic spline analytically.

On doing so the columns of the square matrix (Uij) can be found in the following
manner. Specify the index j of a column and calculate a so-called fundamental spline
(see Ahlberg, Nilson & Walsh 1967). At the points ξi the values of this spline equal
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zero, except the value at the point ξj , which equals unity. By integrating in sequence

the fundamental spline from −1 to ξi find the column Uij, i = 1, N.

To calculate
∫ 1

−1
f(ξ)/(ξ2 − 1)1/2 dξ, where f(ξ) is a smooth function, we will seek

the integral in the form ∫ 1

−1

f(ξ) dξ

(ξ2 − 1)1/2
=

N∑
j=1

αjfj , (A 2)

where αj are coefficients that we need to find, and fj = f(ξj). To remove the
singularities in the integrand we make the transformation u = − arccos ξ. This leads
to a new mesh

ui = − arccos ξi, i = 1, N, −π 6 ui 6 0.

Integrating the fundamental splines, constructed on the mesh ui, from −π to zero, we
find sequentially the coefficients αj .

Taking into account that ∫ 1

−1

dσ

(1− σ2)1/2(σ − ξ)
= 0, (A 3)

we can represent the operator C[θ] in the form

C[θ] = − (1− ξ2)1/2

π

∫ 1

−1

[θ(σ)− θ(ξ)] dσ

(1− σ2)1/2(σ − ξ)
. (A 4)

By means of (A 2), (A 4) after a little algebra we deduce the following representation
for the coefficients Dij:

Dij = − (1− ξ2
i )

1/2

π



N∑
k=1

EikUkj , i 6= j,

N∑
k=1

EikUkj + αi, i = j,

Eij =


αj/(ξj − ξi), i 6= j,

−
N∑
k=1
k 6=i

αk/(ξk − ξi), i = j,

where i = 1, N, j = 1, N, and (Eij) is an auxiliary square matrix.
As the coefficients Uij, Dij are found, the discrete analogue of the system (5.7) and

(5.8) appears as follows:

λi = αK

(
Tmax +

N∑
j=1

Uijλj

)
exp

(
N∑
i=1

Dijλj

)
, i = 1, N, (A 5)

N∑
j=1

UNjλj = Tmin − Tmax. (A 6)

This is the system of N + 1 equations with N + 1 unknowns that we solve by
Newton’s iterative procedure. The square matrices (Uij) and (Dij) depend only on N
and can therefore be tabulated before the beginning of the iterations. The form of
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Figure 7. The functions λ(ξ) for Tmax = −Tmin = 180◦ (solid line) and (A 7) (dashed line) near the
point ξ = 1.

the equations (A 5) and (A 6) allows us to calculate the Jacobian ‘derivative matrix’
analytically, which makes the iterative cycle both quicker and more precise.

The above technique can be applied to many free-surface problems with prescribed
curvilinear boundaries. Its main advantage in comparison with the technique of the
truncated Fourier series (see e.g. Birkhoff & Zarantonello 1957) is the possibility of
using non-uniform meshes. Indeed, let us consider the function λ(ξ) for Tmin = Tmax =
180◦, shown in figure 7 near the point ξ = 1 by a solid line. For these Tmin and Tmax
the function λ(ξ) must be close to

λopt(ξ) =
d

dξ

[
1

π
log

ξ − 1

ξ + 1

]
=

2

π

1

ξ2 − 1
(A 7)

everywhere except small segments near the end points ξ = −1 and ξ =1, where
λ(ξ) and λopt(ξ) take very significant negative values. The function (A 7) is shown in
figure 7 by a dashed line. As one can see from figure 7 the non-uniform mesh, defined
by (A 1), allows us to capture the behaviour of λ(ξ) near the end points, including the
local minimum located approximately at ξ = 0.999974. It is evident that to capture
this minimum by a uniform mesh we need to take

N > 2/(1− 0.999974) ≈ 76923.

In our calculations we took N = 301.
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